Modelling Hydrologic Processes in the Mekong River Basin Using a Distributed Model Driven by Satellite Precipitation and Rain Gauge Observations
نویسندگان
چکیده
The Mekong River is the most important river in Southeast Asia. It has increasingly suffered from water-related problems due to economic development, population growth and climate change in the surrounding areas. In this study, we built a distributed Geomorphology-Based Hydrological Model (GBHM) of the Mekong River using remote sensing data and other publicly available data. Two numerical experiments were conducted using different rainfall data sets as model inputs. The data sets included rain gauge data from the Mekong River Commission (MRC) and remote sensing rainfall data from the Tropic Rainfall Measurement Mission (TRMM 3B42V7). Model calibration and validation were conducted for the two rainfall data sets. Compared to the observed discharge, both the gauge simulation and TRMM simulation performed well during the calibration period (1998-2001). However, the performance of the gauge simulation was worse than that of the TRMM simulation during the validation period (2002-2012). The TRMM simulation is more stable and reliable at different scales. Moreover, the calibration period was changed to 2, 4, and 8 years to test the impact of the calibration period length on the two simulations. The results suggest that longer calibration periods improved the GBHM performance during validation periods. In addition, the TRMM simulation is more stable and less sensitive to the calibration period length than is the gauge simulation. Further analysis reveals that the uneven distribution of rain gauges makes the input rainfall data less representative and more heterogeneous, worsening the simulation performance. Our results indicate that remotely sensed rainfall data may be more suitable for driving distributed hydrologic models, especially in basins with poor data quality or limited gauge availability.
منابع مشابه
Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products
In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH) were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze...
متن کاملMultiple-Timescale Intercomparison of Two Radar Products and Rain Gauge Observations over the Arkansas–Red River Basin
A detailed intercomparison was performed for the period January 1998–June 1999 of three different sets of rainfall observations over the watershed covered by the National Weather Service Arkansas–Red Basin River Forecast Center (ABRFC). The rainfall datasets were 1) hourly 4-km-resolution ABRFC-produced P1 estimates, 2) 15-min 2-km resolution NOWrad estimates produced and marketed by Weather Se...
متن کاملComprehensive evaluation of multi-satellite precipitation products with a dense rain gauge network and optimally merging their simulated hydrological flows using the Bayesian model averaging method
0022-1694/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.jhydrol.2012.05.055 ⇑ Corresponding author. Tel.: +86 25 83787480. E-mail address: [email protected] (L. Ren). This study first focuses on comprehensive evaluating three widely used satellite precipitation products (TMPA 3B42V6, TMPA 3B42RT, and CMORPH) with a dense rain gauge network in the Mishui basin (9972 km) in ...
متن کاملEffectiveness of Check Dams in Management and Mitigation of Floods in Quran Gate of Shiraz with semi-Distributed Rainfall-Runoff Simulation
The flood on March 25, 2019 in the Quran Gate of Shiraz led to heavy human and financial losses. Studies of the current condition of the 25 km2 semi-urban watershed of the mentioned area were performed using the SCS semi-distributed rainfall-runoff model. Due to the big difference in average elevation of the Quran Gate watershed with synoptic and rain gauge stations in Shiraz, the precipitation...
متن کاملHydrologic Evaluation of Rainfall Estimates from Radar, Satellite, Gauge, and Combinations on Ft. Cobb Basin, Oklahoma
This study evaluates rainfall estimates from the Next Generation Weather Radar (NEXRAD), operational rain gauges, Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks Cloud Classification System (PERSIANN-CCS) in the context as inputs to a calibrated, distributed hy...
متن کامل